Frame expansions for Gabor multipliers

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frame expansions for Gabor multipliers

Discrete Gabor multipliers are composed of rank one operators. We shall prove, in the case of rank one projection operators, that the generating operators for such multipliers are either Riesz bases (exact frames) or not frames for their closed linear spans. The same dichotomy conclusion is valid for general rank one operators under mild and natural conditions. This is relevant since discrete G...

متن کامل

Nonharmonic Gabor Expansions

We consider Gabor systems generated by a Gaussian function and prove certain classical results of Paley and Wiener on nonharmonic Fourier series of complex exponentials for the Gabor expansion‎. ‎In particular, we prove a version of Plancherel-Po ́lya theorem for entire functions with finite order of growth and use the Hadamard factorization theorem to study regularity‎, ‎exactness and deficienc...

متن کامل

nonharmonic gabor expansions

we consider gabor systems generated by a gaussian function and prove certain classical results of paley and wiener on nonharmonic fourier series of complex exponentials for the gabor expansion‎. ‎in particular, we prove a version of plancherel-po ́lya theorem for entire functions with finite order of growth and use the hadamard factorization theorem to study regularity‎, ‎exactness and deficienc...

متن کامل

Stability of $g$-Frame Expansions

In this paper we investigate the stability of one-sided perturbation to g-frame expansions. We show that if $Lambda$ is a g-frame of a Hilbert space $mathcal{H}$, $Lambda_{i}^{a}=Lambda_{i}+Theta_{i}$ where $Theta_{i} in mathcal{L}(mathcal{H},mathcal{H}_{i})$, and $widetilde{f}=sum_{i in J}Lambda_{i}^{star}widetilde{Lambda}_{i}^{a}f$, $widehat{f}=sum_{i in J}(Lambda_{i}^{a})^{star}widetilde{Lam...

متن کامل

Gabor and Wavelet Expansions

This paper is an examination of techniques for obtaining Fourier series-like expansions of finite-energy signals using so-called Gabor and wavelet expansions. These expansions decompose a given signal into time and frequency localized components. The theory of frames in Hilbert spaces is used as a criteria for determining when such expansions are good representations of the signals. Some result...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied and Computational Harmonic Analysis

سال: 2006

ISSN: 1063-5203

DOI: 10.1016/j.acha.2005.03.002